Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
1.
International Journal of Biomedical Engineering ; (6): 61-65, 2023.
Article in Chinese | WPRIM | ID: wpr-989317

ABSTRACT

In recent years, problems such as the devitalization of dental pulp and the increased brittleness and fragility of teeth after root canal treatment have attracted more and more attention. Therefore, pulp regeneration has become the focus of research in endodontics and periapical disease, in which vascularization is of paramount importance. It is found that peptide hydrogel scaffolds have been widely applied because of their properties of impacting cell behavior, promoting angiogenesis, and being adaptable. In this review paper, the research progress of the application of peptide hydrogel in the vascularization of pulp regeneration and the properties of various peptide hydrogels were summarized to provide a reference for the further application of peptide hydrogel in pulp regeneration.

2.
Tissue Engineering and Regenerative Medicine ; (6): 177-189, 2019.
Article in English | WPRIM | ID: wpr-761893

ABSTRACT

BACKGROUND: Nano-hydroxyapatite/polyamide 66 (nHA/PA66) is a composite used widely in the repair of bone defects. However, this material is insufficient bioactivity. In contrast, D-RADA16-RGD self-assembling peptide (D-RADA16-RGD sequence containing all D-amino acids is Ac-RADARADARADARADARGDS-CONH2) shows admirable bioactivity for both cell culture and bone regeneration. Here, we describe the fabrication of a favorable biomaterial material (nHA/PA66/D-RADA16-RGD). METHODS: Proteinase K and circular dichroism spectroscopy were employed to test the stability and secondary structural properties of peptide D-RADA16-RGD respectively. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were used to characterize the surface of these materials. Confocal laser scanning (CLS), cell counting kit-8 tests (CCK-8), alizarin red S staining, cell immunofluorescence analysis and Western blotting were involved in vitro. Also biosafety and bioactivity of them have been evaluated in vivo. RESULTS: Proteinase K and circular dichroism spectroscopy demonstrated that D-RADA16-RGD in nHA/PA66 was able to form stable-sheet secondary structure. SEM and TEM showed that the D-RADA16-RGD material was 7–33 nm in width and 130–600 nm in length, and the interwoven pore size ranged from 40 to 200 nm. CLS suggests that cells in nHA/PA66/D-RADA16-RGD group were linked to adjacent cells with more actin filaments. CCK-8 analysis showed that nHA/PA66/D-RADA16-RGD revealed good biocompatibility. The results of Alizarin-red S staining and Western blotting as well as vivo osteogenesis suggest nHA/PA66/D-RADA16-RGD exhibits better bioactivity. CONCLUSION: This study demonstrates that our nHA/PA66/D-RADA16-RGD composite exhibits reasonable mechanical properties, biocompatibility and bioactivity with promotion of bone formation.


Subject(s)
Actin Cytoskeleton , Blotting, Western , Bone Regeneration , Cell Count , Cell Culture Techniques , Circular Dichroism , Endopeptidase K , Fluorescent Antibody Technique , In Vitro Techniques , Microscopy, Electron, Scanning , Microscopy, Electron, Transmission , Osteogenesis , Sincalide , Spectrum Analysis
SELECTION OF CITATIONS
SEARCH DETAIL